Abstract:Referring video segmentation aims to segment the corresponding video object described by the language expression. To address this task, we first design a two-stream encoder to extract CNN-based visual features and transformer-based linguistic features hierarchically, and a vision-language mutual guidance (VLMG) module is inserted into the encoder multiple times to promote the hierarchical and progressive fusion of multi-modal features. Compared with the existing multi-modal fusion methods, this two-stream encoder takes into account the multi-granularity linguistic context, and realizes the deep interleaving between modalities with the help of VLGM. In order to promote the temporal alignment between frames, we further propose a language-guided multi-scale dynamic filtering (LMDF) module to strengthen the temporal coherence, which uses the language-guided spatial-temporal features to generate a set of position-specific dynamic filters to more flexibly and effectively update the feature of current frame. Extensive experiments on four datasets verify the effectiveness of the proposed model.
Abstract:Recently, referring image segmentation has aroused widespread interest. Previous methods perform the multi-modal fusion between language and vision at the decoding side of the network. And, linguistic feature interacts with visual feature of each scale separately, which ignores the continuous guidance of language to multi-scale visual features. In this work, we propose an encoder fusion network (EFN), which transforms the visual encoder into a multi-modal feature learning network, and uses language to refine the multi-modal features progressively. Moreover, a co-attention mechanism is embedded in the EFN to realize the parallel update of multi-modal features, which can promote the consistent of the cross-modal information representation in the semantic space. Finally, we propose a boundary enhancement module (BEM) to make the network pay more attention to the fine structure. The experiment results on four benchmark datasets demonstrate that the proposed approach achieves the state-of-the-art performance under different evaluation metrics without any post-processing.